Practice Questions for Validation Exam for MA1115

Show your work and circle your answers. No calculators allowed.

1. Given the parametric curve

$$x = e^t$$
 , $y = \sin(2t)$

Find the equation for the line tangent to the curve at the point where t = 0.

- 2. Express the vector $\mathbf{B} = 5\mathbf{i} 2\mathbf{j} 3\mathbf{k}$ as the sum of a vector \mathbf{B}_1 parallel to $\mathbf{A} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and a vector \mathbf{B}_2 orthogonal to \mathbf{A} .
- 3. Suppose you are walking on a surface given by:

$$z = \sin(\pi xy) - y^2 + \ln(1+x)$$

If you start at the point (x, y) = (2, 1) and walk northeast (where x is east and y is north), how steep, uphill or downhill, is your path at that point?

4. Find all relative maxima, minima, and saddle points of f(x,y) below:

$$f(x,y) = y^4 + 2x^2 + 4xy$$

5. Evaluate the given double integral. (Hint: start by changing the order of integration.)

$$\int_0^1 \int_x^{x^{1/3}} e^{y^2} \, dy \, dx$$

6. Convert the given triple integral to <u>spherical</u> coordinates, then <u>evaluate</u> the resulting triple integral.

$$\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} (xz) \, dz \, dy \, dx$$